MATH 430, SPRING 2022 NOTES APRIL 18-29

Below we use the following shortcut notation:

- p|a to mean $\phi_{div}(p,a)$; $p \not| a$ to mean $\neg \phi_{div}(p,a)$;
- p_n to mean the *n*-th prime starting from 0. I.e. the unique *x*, such that $\phi_{th-prime}(x,n)$ holds. Note that $n \mapsto p_n$ is primitive recursive, and so writing p_n has complexity Δ_1 .
- if a codes a sequence of length n, and i < n, we use a_i to denote the *i*-th element of the sequence. I.e. $a \operatorname{codes} \langle a_0, ..., a_n \rangle$. In class we showed that saying " $b = a_i$ " is equivalent to a Δ_1 formula.

Theorem 1. There is a Δ_1 formula $\phi_{code-lh}(x,n)$ which says that x codes a sequence of length n.

Proof. Set
$$\phi_{code-lh}(x,n) := \phi_{code}(x) \wedge p_{n-1} | x \wedge p_n | x$$
.

From now on, if x codes a sequence we use $\ln(n)$ to denote the length of the sequence. Since $\phi_{code-lh}(x,n)$ is Δ_1 , the complexity of $\ln(n)$ is also Δ_1 .

Theorem 2. There is a Δ_1 formula $\phi_{form}(x)$, such that for all $a \in \mathbb{N}$, $\mathfrak{A} \models \phi_{form}[a]$ iff a codes a formula.

We will skip the proof of this theorem, but recall we had an informal discussion in class why it is true.

Coding notation: for a formula ϕ , the Gödel number of ϕ is the natural number that codes ϕ , denoted by $\lceil \phi \rceil$. Also if $a \in \mathbb{N}$ codes a formula, ϕ_a denotes the formula coded by a. In particular, $\lceil \phi_a \rceil = a$.

Theorem 3. There is a Δ_1 formula $\phi_{many-form}(x, n)$, such that for all $a \in \mathbb{N}$, $\mathfrak{A} \models \phi_{many-form}[a, n]$ iff a codes a finite sequence of n many formulas. I.e. a codes a sequence $\langle a_0, ..., a_{n-1} \rangle$ and for each i < n, a_i codes a formula.

Proof. Set $\phi_{many-form}(x,n) := \phi_{code}(x) \wedge \ln(x) = n \wedge \forall i < n\phi_{form}(x_i)$. This is Δ_1 , since ϕ_{code} , $\ln(x)$, ϕ_{form} , x_i are all Δ_1 and and we only used bounded quantifiers.

Definition 4. Let T be a set of formulas in the language of PA. T is recursive if $\{e \in \mathbb{N} \mid \phi_e \in T\}$ is a recursive subset of \mathbb{N} . We say that T is a recursive extension of PA if $PA \subset T$ and T is recursive.

Example: one can check that the logical axioms Λ are recursive. Let ϕ_{Λ} be the Δ_1 formula such that $\Lambda = \{\phi_e \mid \mathfrak{A} \models \phi_{\Lambda}[e]\}.$

We make one more proposition.

Proposition 5. There is a Δ_1 formula $\phi_{MP}(x, y, z)$, that says that ϕ_x is the formula $\phi_y \to \phi_z$. More precisely, for all $a, b, c \in \mathbb{N}$, $\mathfrak{A} \models \phi_{MP}[a, b, c]$ iff a, b, c all code formulas and ϕ_a is the formula $\phi_b \to \phi_c$.

Proof. Set $\phi_{MP}(x, y, z) := \phi_{form}(x) \land \phi_{form}(y) \land \phi_{form}(z) \land \ln(x) = \ln(y) + 1 + \ln(z) \land$ $\forall i < \ln(y)(x_i = y_i) \land x_{\ln(y)} = \ulcorner \rightarrow \urcorner \land \forall i < \ln(z)(x_{\ln(y)+i+1} = z_i).$ ¹

Theorem 6. Suppose that T is a recursive extension of PA. Then there is a Δ_1 formula $\phi_{ded-T}(x, y)$, such that for all $e, a \in \mathbb{N}$, $\mathfrak{A} \models \phi_{ded-T}[e, a]$ iff a codes a formula and e codes a deduction from T to ϕ_a .

Proof. Since T is recursive, let $\phi_T(x)$ be the Δ_1 formula, such that $\{e \in \mathbb{N} \mid \phi_e \in T\} = \{e \in \mathbb{N} \mid \mathfrak{A} \models \phi_T[e]\}$. In other words, $\phi_e \in T$ iff $\mathfrak{A} \models \phi_T[e]$.

Recall that a deduction is a sequence of formulas such that each formula is in $T \cup \Lambda$ or is obtained by modus ponens from earlier formulas in the sequence.

 $\begin{aligned} \phi_{ded-T}(x,y) &:= \\ \phi_{form}(y) \wedge \exists n < x(\phi_{many-form}(x,n) \wedge x_{n-1} = y \wedge \forall i < n \\ [\phi_T(x_i) \lor \phi_{\Lambda}(x_i) \lor \exists j < i \exists k < i(\phi_{MP}(y_j, y_k, y_i))] \end{aligned}$

This is Δ_1 , since we only used Δ_1 sub-formulas and bounded quantifiers. \Box

In a similar way, we can define a Δ_1 formula $\phi_{ded-T}(x, y, z)$ to say that y codes a formula with one free variable, say $\psi(v)$ and than x codes a deduction from T to $\psi(z)$. Namely, for all $e, a, b \in \mathbb{N}$,

 $\mathfrak{A} \models \phi_{ded-T}[e, a]$ iff e codes a deduction from T to $\phi_a[b]$.

Definition 7. Suppose that T is recursive. Set $\phi_{prov-T}(x, y) := \exists e \phi_{ded-T}(e, x, y)$.

Theorem 8. If T is a recursive extension of PA, then $\phi_{prov-T}(x, y)$ is a Σ_1 formula, such that

$$\mathfrak{A} \models \phi_{prov}[a, b] \text{ iff } T \vdash \phi_a[b].$$

Let e be the Gödel number of $\neg \phi_{prov}(x, x)$. In other words, $\phi_e = \neg \phi_{prov}(x, x)$. Define

$$\sigma := \neg \phi_{prov-T}(e, e)$$

Note that σ is exactly $\phi_e(e)$, and informally it says "I am not provable".

Proposition 9. Suppose that T is a recursive extension of PA

- (1) $\mathfrak{A} \models \sigma iff T \not\vdash \sigma$.
- (2) Suppose in addition, that every sentence in T is true in standard arithmetic i.e. $\mathfrak{A} \models T$. Then $\mathfrak{A} \models \sigma$, and so $T \not\vdash \sigma$.

Proof. The first part is assigned as homework. For the second, suppose for contradiction that $\mathfrak{A} \not\models \sigma$. Then by the first part, we have that $T \vdash \sigma$. Since $\mathfrak{A} \models T$, this means that $\mathfrak{A} \models \sigma$. Contradiction.

¹Here $\neg \rightarrow \neg$ means the digit corresponding to \rightarrow according to some legend fixed in advance.

The sentence σ used above is called the **Gödel sentence for** T. We showed that $\mathfrak{A} \models \sigma$ iff $T \not\vdash \sigma$ iff $\mathfrak{A} \models \neg \phi_{prov-T}(\ulcorner \sigma \urcorner)$.

So, $\mathfrak{A} \models \sigma \leftrightarrow \neg \phi_{prov-T}(\ulcorner \sigma \urcorner)$. We can actually prove something slightly stronger.

Proposition 10. $PA \vdash \sigma \leftrightarrow \neg \phi_{prov-T}(\ulcorner \sigma \urcorner)$

Finally, we can show the first Incompleteness theorem.

Theorem 11. (Gödel's First Incompleteness Theorem) There is no complete recursive extension T of PA, true in \mathfrak{A} . In particular PA is not complete.

Proof. Fix any recursive extension T of PA, true in \mathfrak{A} . By the above proposition, there is a sentence σ true in \mathfrak{A} , such that $T \not\vdash \sigma$. T also cannot prove $\neg \sigma$, as $\mathfrak{A} \models \sigma$. It follows that T is incomplete.

 \square

Now, for the second theorem, define the following formulas. $Incon_T :=$ $\phi_{prov-T}(\neg 0 = 1 \neg)$ and $Con_T := \neg Incon_T$. We will use the following lemma:

Lemma 12. Let T be as above.

- (1) If $PA \vdash \alpha \rightarrow \beta$, then $PA \vdash \phi_{prov-T}(\ulcorner \alpha \urcorner) \rightarrow \phi_{prov-T}(\ulcorner \beta \urcorner)$.
- (2) Suppose that ψ is a Σ_1 -formula. Then $PA \vdash \psi \rightarrow \phi_{prov-T}(\ulcorner \psi \urcorner)$.
- (3) $PA \vdash \phi_{prov-T}(a) \rightarrow \phi_{prov-T}(\ulcorner \phi_{prov-T}(a) \urcorner).$

Theorem 13. (Gödel's Second Incompleteness Theorem) Suppose T is a consistent recursive extension of PA. The T does not prove its own consistency.

Proof. Let σ be the Gödel sentence we used above. First we will show that $PA \vdash Con(T) \rightarrow \sigma$. We have:

By Proposition 10, $PA \vdash \phi_{prov-T}(\ulcorner \sigma \urcorner) \rightarrow \neg \sigma$;

By Lemma 12 (1) $PA \vdash \phi_{prov-T}(\ulcorner \phi_{prov-T}(\ulcorner \sigma \urcorner) \urcorner) \rightarrow \phi_{prov-T}(\ulcorner \neg \sigma \urcorner)$ By Lemma 12 (3), $PA \vdash \phi_{prov-T}(\ulcorner \sigma \urcorner) \rightarrow \phi_{prov-T}(\ulcorner \phi_{prov-T}(\ulcorner \sigma \urcorner) \urcorner)$

From all these it follows that :

$$PA \vdash \phi_{prov-T}(\ulcorner \sigma \urcorner) \rightarrow \phi_{prov-T}(\ulcorner \neg \sigma \urcorner).$$

Since, trivially, we also have that $PA \vdash \phi_{prov-T}(\ulcorner \sigma \urcorner) \rightarrow \phi_{prov-T}(\ulcorner \sigma \urcorner)$, it follows that

$$PA \vdash \phi_{prov-T}(\ulcorner \sigma \urcorner) \rightarrow \phi_{prov-T}(\ulcorner 0 = 1 \urcorner).$$

In other words, $PA \vdash \neg \sigma \rightarrow Incon_T$. Taking the contrapositive, we get $PA \vdash Con_T \rightarrow \sigma$.

Suppose now for contradiction $T \vdash Con_T$. Since $PA \subset T$ and $PA \vdash$ $Con_T \to \sigma$, we have that $T \vdash \sigma$. But that contradicts Proposition 9.

And so Hilbert's dream that every true mathematical statement can be proved was shattered by Gödel.