MATH 430, SPRING 2022

NOTES APRIL 18-29

Below we use the following shortcut notation:

- $p \mid a$ to mean $\phi_{d i v}(p, a) ; p$ 〈a to mean $\neg \phi_{d i v}(p, a)$;
- p_{n} to mean the n-th prime starting from 0 . I.e. the unique x, such that $\phi_{\text {th-prime }}(x, n)$ holds. Note that $n \mapsto p_{n}$ is primitive recursive, and so writing p_{n} has complexity Δ_{1}.
- if a codes a sequence of length n, and $i<n$, we use a_{i} to denote the i-th element of the sequence. I.e. a codes $\left\langle a_{0}, \ldots, a_{n}\right\rangle$. In class we showed that saying " $b=a_{i}$ " is equivalent to a Δ_{1} formula.
Theorem 1. There is a Δ_{1} formula $\phi_{\text {code-lh }}(x, n)$ which says that x codes a sequence of length n.
Proof. Set $\phi_{\text {code-lh }}(x, n):=\phi_{\text {code }}(x) \wedge p_{n-1} \mid x \wedge p_{n} \backslash x$.
From now on, if x codes a sequence we use $\operatorname{lh}(n)$ to denote the the length of the sequence. Since $\phi_{\text {code-lh }}(x, n)$ is Δ_{1}, the complexity of $\operatorname{lh}(n)$ is also Δ_{1}.
Theorem 2. There is a Δ_{1} formula $\phi_{\text {form }}(x)$, such that for all $a \in \mathbb{N}$, $\mathfrak{A} \models \phi_{\text {form }}[a]$ iff a codes a formula.

We will skip the proof of this theorem, but recall we had an informal discussion in class why it is true.

Coding notation: for a formula ϕ, the Gödel number of ϕ is the natural number that codes ϕ, denoted by $\ulcorner\phi\urcorner$. Also if $a \in \mathbb{N}$ codes a formula, ϕ_{a} denotes the formula coded by a. In particular, $\left\ulcorner\phi_{a}\right\urcorner=a$.
Theorem 3. There is a Δ_{1} formula $\phi_{\text {many-form }}(x, n)$, such that for all $a \in$ $\mathbb{N}, \mathfrak{A} \models \phi_{\text {many-form }}[a, n]$ iff a codes a finite sequence of n many formulas. I.e. a codes a sequence $\left\langle a_{0}, \ldots, a_{n-1}\right\rangle$ and for each $i<n, a_{i}$ codes a formula.

Proof. Set $\phi_{\text {many-form }}(x, n):=\phi_{\text {code }}(x) \wedge \operatorname{lh}(x)=n \wedge \forall i<n \phi_{\text {form }}\left(x_{i}\right)$.
This is Δ_{1}, since $\phi_{\text {code }}, \operatorname{lh}(x), \phi_{\text {form }}, x_{i}$ are all Δ_{1} and and we only used bounded quantifiers.
Definition 4. Let T be a set of formulas in the language of PA. T is recursive if $\left\{e \in \mathbb{N} \mid \phi_{e} \in T\right\}$ is a recursive subset of \mathbb{N}. We say that T is a recursive extension of $P A$ if $P A \subset T$ and T is recursive.

Example: one can check that the logical axioms Λ are recursive. Let ϕ_{Λ} be the Δ_{1} formula such that $\Lambda=\left\{\phi_{e} \mid \mathfrak{A} \models \phi_{\Lambda}[e]\right\}$.

We make one more proposition.

Proposition 5. There is a Δ_{1} formula $\phi_{M P}(x, y, z)$, that says that ϕ_{x} is the formula $\phi_{y} \rightarrow \phi_{z}$. More precisely, for all $a, b, c \in \mathbb{N}, \mathfrak{A} \models \phi_{M P}[a, b, c]$ iff a, b, c all code formulas and ϕ_{a} is the formula $\phi_{b} \rightarrow \phi_{c}$.
Proof. Set $\phi_{M P}(x, y, z):=$
$\phi_{\text {form }}(x) \wedge \phi_{\text {form }}(y) \wedge \phi_{\text {form }}(z) \wedge \operatorname{lh}(x)=\operatorname{lh}(y)+1+\operatorname{lh}(z) \wedge$
$\forall i<\operatorname{lh}(y)\left(x_{i}=y_{i}\right) \wedge x_{\operatorname{lh}(y)}=\ulcorner\rightarrow\urcorner \wedge \forall i<\operatorname{lh}(z)\left(x_{\operatorname{lh}(y)+i+1}=z_{i}\right) .{ }^{1}$
Theorem 6. Suppose that T is a recursive extension of $P A$. Then there is $a \Delta_{1}$ formula $\phi_{\text {ded-T }}(x, y)$, such that for all $e, a \in \mathbb{N}, \mathfrak{A}=\phi_{d e d-T}[e, a]$ iff a codes a formula and e codes a deduction from T to ϕ_{a}.

Proof. Since T is recursive, let $\phi_{T}(x)$ be the Δ_{1} formula, such that $\{e \in \mathbb{N} \mid$ $\left.\phi_{e} \in T\right\}=\left\{e \in \mathbb{N} \mid \mathfrak{A}=\phi_{T}[e]\right\}$. In other words, $\phi_{e} \in T$ iff $\mathfrak{A}=\phi_{T}[e]$.

Recall that a deduction is a sequence of formulas such that each formula is in $T \cup \Lambda$ or is obtained by modus ponens from earlier formulas in the sequence.

```
\(\phi_{\text {ded }-T}(x, y):=\)
\(\phi_{\text {form }}(y) \wedge \exists n<x\left(\phi_{\text {many-form }}(x, n) \wedge x_{n-1}=y \wedge \forall i<n\right.\)
\(\left[\phi_{T}\left(x_{i}\right) \vee \phi_{\Lambda}\left(x_{i}\right) \vee \exists j<i \exists k<i\left(\phi_{M P}\left(y_{j}, y_{k}, y_{i}\right)\right)\right]\)
```

This is Δ_{1}, since we only used Δ_{1} sub-formulas and bounded quantifiers.
In a similar way, we can define a Δ_{1} formula $\phi_{d e d-T}(x, y, z)$ to say that y codes a formula with one free variable, say $\psi(v)$ and than x codes a deduction from T to $\psi(z)$. Namely, for all $e, a, b \in \mathbb{N}$,

$$
\mathfrak{A} \models \phi_{d e d-T}[e, a] \text { iff } e \text { codes a deduction from } T \text { to } \phi_{a}[b] .
$$

Definition 7. Suppose that T is recursive. $\operatorname{Set} \phi_{\text {prov }-T}(x, y):=\exists e \phi_{d e d-T}(e, x, y)$.
Theorem 8. If T is a recursive extension of $P A$, then $\phi_{\text {prov-T }}(x, y)$ is a Σ_{1} formula, such that

$$
\mathfrak{A} \models \phi_{\text {prov }}[a, b] \text { iff } T \vdash \phi_{a}[b] .
$$

Let e be the Gödel number of $\neg \phi_{\text {prov }}(x, x)$. In other words, $\phi_{e}=\neg \phi_{\text {prov }}(x, x)$. Define

$$
\sigma:=\neg \phi_{\text {prov }-T}(e, e)
$$

Note that σ is exactly $\phi_{e}(e)$, and informally it says "I am not provable".
Proposition 9. Suppose that T is a recursive extension of $P A$
(1) $\mathfrak{A} \models \sigma$ iff $T \nvdash \sigma$.
(2) Suppose in addition, that every sentence in T is true in standard arithmetic i.e. $\mathfrak{A} \mid=T$. Then $\mathfrak{A} \mid=\sigma$, and so $T \nvdash \sigma$.

Proof. The first part is assigned as homework. For the second, suppose for contradiction that $\mathfrak{A} \not \vDash \sigma$. Then by the first part, we have that $T \vdash \sigma$. Since $\mathfrak{A} \models T$, this means that $\mathfrak{A} \mid=\sigma$. Contradiction.

[^0]The sentence σ used above is called the Gödel sentence for T. We showed that $\mathfrak{A} \models \sigma$ iff $T \nvdash \sigma$ iff $\mathfrak{A} \models \neg \phi_{\text {prov }-T}(\ulcorner\sigma\urcorner)$.
So, $\mathfrak{A} \mid=\sigma \leftrightarrow \neg \phi_{\text {prov }-T}(\ulcorner\sigma\urcorner)$. We can actually prove something slightly stronger.
Proposition 10. $P A \vdash \sigma \leftrightarrow \neg \phi_{\text {prov }-T}(\ulcorner\sigma\urcorner)$
Finally, we can show the first Incompleteness theorem.
Theorem 11. (Gödel's First Incompleteness Theorem) There is no complete recursive extension T of $P A$, true in \mathfrak{A}. In particular $P A$ is not complete.

Proof. Fix any recursive extension T of PA, true in \mathfrak{A}. By the above proposition, there is a sentence σ true in \mathfrak{A}, such that $T \nvdash \sigma . T$ also cannot prove $\neg \sigma$, as $\mathfrak{A} \models \sigma$. It follows that T is incomplete.

Now, for the second theorem, define the following formulas. $\operatorname{Incon}_{T}:=$ $\phi_{\text {prov }-T}(\ulcorner 0=1\urcorner)$ and $\operatorname{Con}_{T}:=\neg \operatorname{Incon}_{T}$. We will use the following lemma:

Lemma 12. Let T be as above.
(1) If $P A \vdash \alpha \rightarrow \beta$, then $P A \vdash \phi_{\text {prov }-T}(\ulcorner\alpha\urcorner) \rightarrow \phi_{\text {prov }-T}(\ulcorner\beta\urcorner)$.
(2) Suppose that ψ is a Σ_{1}-formula. Then $P A \vdash \psi \rightarrow \phi_{\text {prov }-T}(\ulcorner\psi\urcorner)$.
(3) $P A \vdash \phi_{\text {prov }-T}(a) \rightarrow \phi_{\text {prov }-T}\left(\left\ulcorner\phi_{\text {prov }-T}(a)\right\urcorner\right)$.

Theorem 13. (Gödel's Second Incompleteness Theorem) Suppose T is a consistent recursive extension of $P A$. The T does not prove its own consistency.

Proof. Let σ be the Gödel sentence we used above. First we will show that $P A \vdash \operatorname{Con}(T) \rightarrow \sigma$. We have:

By Proposition 10, $P A \vdash \phi_{\text {prov }-T}(\ulcorner\sigma\urcorner) \rightarrow \neg \sigma$;
By Lemma 12 (1) $P A \vdash \phi_{\text {prov }-T}\left(\left\ulcorner\phi_{\text {prov }-T}(\ulcorner\sigma\urcorner)\right\urcorner\right) \rightarrow \phi_{\text {prov }-T}(\ulcorner\neg \sigma\urcorner)$
By Lemma 12 (3), $P A \vdash \phi_{\text {prov }-T}(\ulcorner\sigma\urcorner) \rightarrow \phi_{\text {prov }-T}\left(\left\ulcorner\phi_{\text {prov }-T}(\ulcorner\sigma\urcorner)\right\urcorner\right)$
From all these it follows that :

$$
P A \vdash \phi_{\text {prov }-T}(\ulcorner\sigma\urcorner) \rightarrow \phi_{\text {prov }-T}(\ulcorner\neg \sigma\urcorner) .
$$

Since, trivially, we also have that $P A \vdash \phi_{\text {prov }-T}(\ulcorner\sigma\urcorner) \rightarrow \phi_{\text {prov }-T}(\ulcorner\sigma\urcorner)$, it follows that

$$
P A \vdash \phi_{\text {prov }-T}(\ulcorner\sigma\urcorner) \rightarrow \phi_{\text {prov }-T}(\ulcorner 0=1\urcorner) .
$$

In other words, $P A \vdash \neg \sigma \rightarrow$ Incon $_{T}$. Taking the contrapositive, we get $P A \vdash$ Con $_{T} \rightarrow \sigma$.

Suppose now for contradiction $T \vdash \operatorname{Con}_{T}$. Since $P A \subset T$ and $P A \vdash$ $C^{C o n} \rightarrow \sigma$, we have that $T \vdash \sigma$. But that contradicts Proposition 9.

And so Hilbert's dream that every true mathematical statement can be proved was shattered by Gödel.

[^0]: ${ }^{1}$ Here $\ulcorner\rightarrow\urcorner$ means the digit corresponding to \rightarrow according to some legend fixed in advance.

