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Below we use the following shortcut notation:

• p|a to mean φdiv(p, a); p 6 |a to mean ¬φdiv(p, a);
• pn to mean the n-th prime starting from 0. I.e. the unique x, such

that φth−prime(x, n) holds. Note that n 7→ pn is primitive recursive,
and so writing pn has complexity ∆1.
• if a codes a sequence of length n, and i < n, we use ai to denote the
i-th element of the sequence. I.e. a codes 〈a0, ..., an〉. In class we
showed that saying “b = ai” is equivalent to a ∆1 formula.

Theorem 1. There is a ∆1 formula φcode−lh(x, n) which says that x codes
a sequence of length n.

Proof. Set φcode−lh(x, n) := φcode(x) ∧ pn−1|x ∧ pn 6 |x.
�

From now on, if x codes a sequence we use lh(n) to denote the the length
of the sequence. Since φcode−lh(x, n) is ∆1, the complexity of lh(n) is also
∆1.

Theorem 2. There is a ∆1 formula φform(x), such that for all a ∈ N,
A |= φform[a] iff a codes a formula.

We will skip the proof of this theorem, but recall we had an informal
discussion in class why it is true.

Coding notation: for a formula φ, the Gödel number of φ is the natural
number that codes φ, denoted by pφq. Also if a ∈ N codes a formula, φa
denotes the formula coded by a. In particular, pφaq = a.

Theorem 3. There is a ∆1 formula φmany−form(x, n), such that for all a ∈
N, A |= φmany−form[a, n] iff a codes a finite sequence of n many formulas.
I.e. a codes a sequence 〈a0, ..., an−1〉 and for each i < n, ai codes a formula.

Proof. Set φmany−form(x, n) := φcode(x) ∧ lh(x) = n ∧ ∀i < nφform(xi).
This is ∆1, since φcode, lh(x), φform, xi are all ∆1 and and we only used
bounded quantifiers. �

Definition 4. Let T be a set of formulas in the language of PA. T is re-
cursive if {e ∈ N | φe ∈ T} is a recursive subset of N. We say that T is a
recursive extension of PA if PA ⊂ T and T is recursive.

Example: one can check that the logical axioms Λ are recursive. Let φΛ

be the ∆1 formula such that Λ = {φe | A |= φΛ[e]}.
We make one more proposition.
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Proposition 5. There is a ∆1 formula φMP (x, y, z), that says that φx is
the formula φy → φz. More precisely, for all a, b, c ∈ N, A |= φMP [a, b, c] iff
a, b, c all code formulas and φa is the formula φb → φc.

Proof. Set φMP (x, y, z) :=
φform(x) ∧ φform(y) ∧ φform(z) ∧ lh(x) = lh(y) + 1 + lh(z)∧
∀i < lh(y)(xi = yi) ∧ xlh(y) = p→q ∧ ∀i < lh(z)(xlh(y)+i+1 = zi).

1 �

Theorem 6. Suppose that T is a recursive extension of PA. Then there is
a ∆1 formula φded−T (x, y), such that for all e, a ∈ N, A |= φded−T [e, a] iff a
codes a formula and e codes a deduction from T to φa.

Proof. Since T is recursive, let φT (x) be the ∆1 formula, such that {e ∈ N |
φe ∈ T} = {e ∈ N | A |= φT [e]}. In other words, φe ∈ T iff A |= φT [e].

Recall that a deduction is a sequence of formulas such that each formula
is in T ∪ Λ or is obtained by modus ponens from earlier formulas in the
sequence.
φded−T (x, y) :=
φform(y) ∧ ∃n < x(φmany−form(x, n) ∧ xn−1 = y ∧ ∀i < n
[φT (xi) ∨ φΛ(xi) ∨ ∃j < i∃k < i(φMP (yj , yk, yi))]

This is ∆1, since we only used ∆1 sub-formulas and bounded quantifiers. �

In a similar way, we can define a ∆1 formula φded−T (x, y, z) to say that y
codes a formula with one free variable, say ψ(v) and than x codes a deduction
from T to ψ(z). Namely, for all e, a, b ∈ N,

A |= φded−T [e, a] iff e codes a deduction from T to φa[b].

Definition 7. Suppose that T is recursive. Set φprov−T (x, y) := ∃eφded−T (e, x, y).

Theorem 8. If T is a recursive extension of PA, then φprov−T (x, y) is a Σ1

formula, such that
A |= φprov[a, b] iff T ` φa[b].

Let e be the Gödel number of ¬φprov(x, x). In other words, φe = ¬φprov(x, x).
Define

σ := ¬φprov−T (e, e).

Note that σ is exactly φe(e), and informally it says ”I am not provable”.

Proposition 9. Suppose that T is a recursive extension of PA

(1) A |= σ iff T 6` σ.
(2) Suppose in addition, that every sentence in T is true in standard

arithmetic i.e. A |= T . Then A |= σ, and so T 6` σ.

Proof. The first part is assigned as homework. For the second, suppose for
contradiction that A 6|= σ. Then by the first part, we have that T ` σ. Since
A |= T , this means that A |= σ. Contradiction.

�

1Here p→q means the digit corresponding to → according to some legend fixed in
advance.
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The sentence σ used above is called the Gödel sentence for T . We
showed that A |= σ iff T 6` σ iff A |= ¬φprov−T (pσq).
So, A |= σ ↔ ¬φprov−T (pσq). We can actually prove something slightly
stronger.

Proposition 10. PA ` σ ↔ ¬φprov−T (pσq)

Finally, we can show the first Incompleteness theorem.

Theorem 11. (Gödel’s First Incompleteness Theorem) There is no com-
plete recursive extension T of PA, true in A. In particular PA is not com-
plete.

Proof. Fix any recursive extension T of PA, true in A. By the above propo-
sition, there is a sentence σ true in A, such that T 6` σ. T also cannot prove
¬σ, as A |= σ. It follows that T is incomplete.

�

Now, for the second theorem, define the following formulas. InconT :=
φprov−T (p0 = 1q) and ConT := ¬InconT . We will use the following lemma:

Lemma 12. Let T be as above.

(1) If PA ` α→ β, then PA ` φprov−T (pαq)→ φprov−T (pβq).
(2) Suppose that ψ is a Σ1-formula. Then PA ` ψ → φprov−T (pψq).
(3) PA ` φprov−T (a)→ φprov−T (pφprov−T (a)q).

Theorem 13. (Gödel’s Second Incompleteness Theorem) Suppose T is a
consistent recursive extension of PA. The T does not prove its own consis-
tency.

Proof. Let σ be the Gödel sentence we used above. First we will show that
PA ` Con(T )→ σ. We have:

By Proposition 10, PA ` φprov−T (pσq)→ ¬σ;
By Lemma 12 (1) PA ` φprov−T (pφprov−T (pσq)q)→ φprov−T (p¬σq)
By Lemma 12 (3), PA ` φprov−T (pσq)→ φprov−T (pφprov−T (pσq)q)

From all these it follows that :

PA ` φprov−T (pσq)→ φprov−T (p¬σq).
Since, trivially, we also have that PA ` φprov−T (pσq) → φprov−T (pσq), it
follows that

PA ` φprov−T (pσq)→ φprov−T (p0 = 1q).

In other words, PA ` ¬σ → InconT . Taking the contrapositive, we get
PA ` ConT → σ.

Suppose now for contradiction T ` ConT . Since PA ⊂ T and PA `
ConT → σ, we have that T ` σ. But that contradicts Proposition 9.

�

And so Hilbert’s dream that every true mathematical statement can be
proved was shattered by Gödel.


